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1. Introduction

Regge phenomena have been studied, both in experiments and in theoretical contexts, for

several decades. Experiments investigating hadron scattering, and associated theoretical

attempts to understand the data, led in the 1960s to a number of important developments

that continue to play a role in current research. The general Regge approach to writing

amplitudes as complex-valued functions of Mandelstam variables, and investigating them

using Mellin transforms, had some general success in characterizing observed amplitudes

that appeared at the time to be inconsistent with quantum field theory. The development of

“dual resonance” models that captured various features of scattering amplitudes, including

s-t channel duality, towers of resonances lying on Regge trajectories α(m2) for m2 > 0,

and near-forward scattering amplitudes proportional to sα(t) for t < 0, were the first steps
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along the road to a consistent string theory. Of course, hadronic scattering experiments

and standard string theory diverged in large-angle scattering (where the amplitudes for the

former fall as powers of s, while those of the latter fall exponentially) and in deep inelastic

scattering (where Bjorken scaling suggested hard, weakly-interacting substructure). The

theory of QCD supplanted string theory as the leading model for strong interactions, and its

success is spectacular. Further, it was soon learned that consistent string theories needed

to be defined with massless spin-two particles, which QCD of course lacks. Yet the fact

that Regge phenomena are evident in the data, in regimes which are not amenable to study

using perturbative QCD, and the successes of the early phenomenogical (and inconsistent)

string theories, have left lingering questions about the relationship between string theory

and the physics of hadrons.

A better understanding of the relationship between QCD and string theory has now

emerged from the discovery of an apparent (but still unproven) duality between non-Abelian

gauge theory and string theory in curved spaces. This duality conjecture [1] contends that

four-dimensional gauge theories which are asymptotically conformal are identical to ten-

dimensional string theories propagating on spaces that are asymptotically five-dimensional

anti-de Sitter space (AdS5) times a compact five-manifold W . The conjecture has provided

a setting in which the successes and failures of the old string theories could be substantially

clarified. The inability of four-dimensional flat-space string theories to match general

features of high-energy QCD amplitudes was shown to be rectified in the scattering of

strings propagating on the appropriate curved spaces; exponential fall-off with s in large-

angle scattering is replaced with power laws [2]. Bjorken scaling does not hold, but its

failure is replaced [3] with a more generalized scaling discussed by Kogut and Susskind in

the context of conformal field theory [4]. The Regge phenomena in string theory amplitudes

manage to reproduce diverse phenomena of gauge theory in various Regge-like regimes [2, 5].

In high-energy scattering at small momentum transfer |t|, where experiments show the

classic Regge forward peak, the string theory computation reduces approximately to four-

dimensional flat-space string theory, and the Regge peak in the string theory is transferred

directly to the gauge theory. At larger negative t, however, and in some other regimes as

well, the fifth dimension of the asymptotically-AdS5 space begins to play a role, washing out

the stringy Regge behavior, and instead reproducing phenomena that mirror the amplitudes

calculated by Balitsky, Fadin, Kuraev and Lipatov (BFKL) [6] in gauge theory, as well as

other phenomena. At the same time, the string theory also provides a discrete set of states

lying on a set of Regge trajectories. Thus many of the essential features of gauge theory,

especially those which are not found in purely perturbative QCD, have been shown to be

reproduced in this “gauge/string correspondence.”

In this paper, we continue the process of learning about Regge physics in contexts that

are challenging to understand fully in QCD. All previous studies of Regge physics in the

gauge/string correspondence have been of 2 → 2 scattering, and here we will attempt to

extend this to important 2 → 3 phenomena in the so-called “double diffractive” or “double

Regge” regime. In this regime, one considers AB → ABX, where A,B are hadrons that

are scattered at small angles without internal excitation or other disruption, and X is an

object produced with a rapidity that lies well between the rapidities of the outgoing A
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and B. Interesting examples in this class that are more or less addressable experimen-

tally include cases where A is a proton, B is a proton or antiproton, and X is a glueball,

a quarkonium state, or a Higgs boson. Diffractive quarkonium production has been ob-

served at Fermilab [7]. Higgs production in double diffractive pp scattering is an important

controversial topic, as experiments are being planned to search for it at the LHC amid

heated discussions about the expected cross-section (see [8] for a brief review). We will

however focus on something akin to pp → pp + glueball, as this is technically the easiest

problem. Our methods will require some minor generalization for the study of quarkonium

production, and at least one additional technical advance for Higgs production.

We should emphasize that our goals are strictly limited, yet ambitious. On the one

hand, none of these processes in real-world QCD can be reliably computed using the

gauge/string correspondence. The correspondence allows detailed study of a certain class

of gauge theories, but unfortunately QCD is not among them. No well-controlled study

of QCD dynamics, allowing for a computation of cross-sections for comparison with ex-

perimental data, is currently possible. While some surprising success has been achieved

modeling the spectrum of QCD, as well as some hadron couplings, using five-dimensional

effective field theories [9, 10], it is quite another matter to compute scattering amplitudes

in which stringy phenomena play an essential role. We know that some aspects of QCD in

scattering are not true in gauge theories for which stringy computations are reliable. For

instance, Bjorken scaling is badly violated, and Regge exponents differ by something of

order unity from those at weak coupling.

Our approach here is to treat those gauge theories for which the gauge/string corre-

spondence can be easily applied as toy models for QCD. We seek to identify phenomena

which are universal or quasi-universal in these toy models, and in turn, to understand the

degree to which they may apply also in all confining gauge theories, including QCD. Though

the numerical details of our calculations will not match QCD, we expect our toy model and

QCD to share key qualitative and semi-quantitative features. Moreover, the similarities

and differences between our model and QCD should be physically comprehensible.

The simplest possible use of our toy models would be a direct one: it is possible that

the behavior of our amplitudes as a function of the kinematic variables may be similar to

that of QCD. A more subtle but potentially more important use of these toy models is at

the level of general methodology and conceptual understanding. Our goals here are limited

to the latter, and our results should be viewed as exploratory, especially as data on the

process computed below is limited. We hope this paper will be a useful step in the direction

of allowing computation of diffractive processes for which data is more easily accessible.

2. Preliminaries

A gauge/string duality is a conjectured equivalence between a string theory in an asymp-

totically hyperbolic geometry and a gauge theory in a fewer number of dimensions. The

original and best established example of this duality maps type IIB string theory in an

AdS5 × S5 background, where AdS5 is five-dimensional anti-de Sitter space and S5 is a

five-dimensional sphere, to the maximally supersymmetric SU(N) Yang-Mills theory in
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3+1 dimensions. This supersymmetric field theory is scale invariant and is thus an exam-

ple of a conformal field theory (CFT). As the hard-wall model we consider in this paper is

only a slight generalization of this original version of the duality, it is worthwhile to review

the details of the AdS5/CFT4 correspondence.

The original gauge/string duality can be motivated by considering the effects of placing

a stack of N coincident D3-branes in flat ten dimensional space. The D3-branes are 3+1

dimensional surfaces on which the open strings of type IIB string theory may end. On the

one hand, a low-energy description of a stack of N D3-branes is N = 4 supersymmetric

Yang-Mills theory, loosely motivated by the fact that the N2 open strings which inter-

connect the D3-branes can be reinterpreted as gluons. On the other hand, the D3-branes

are massive objects and in the large N limit substantially warp spacetime. “Close” to the

D3-branes, the geometry approaches AdS5 × S5.

Given this correspondence, for which there is now an enormous amount of evidence but

no proof, there exists a dictionary mapping stringy quantities to gauge theory quantities.

The Yang-Mills coupling constant g2
YM maps to 4πgs where gs is the string coupling constant

which measures the probability for strings to split. The ’t Hooft coupling λ ≡ g2
YMN maps

to R4/α′2 where R is the radius of curvature of both AdS5 and S5 and 1/2πα′ is the string

tension. One usefulness of the duality lies in the scaling limit N → ∞ while keeping λ

large and fixed. By taking N → ∞, the string splitting amplitude is suppressed and strings

may be treated classically. Taking λ large corresponds to keeping the curvature scale of

the geometry very large compared to the string scale, in which limit low-energy processes

in string theory are well approximated by supergravity. Thus strongly interacting physics

on the gauge theory side gets mapped to classical general relativity.

In this paper, we will be interested in very high energy scattering processes for which

supergravity is not enough, although it provides a useful point of departure. While the

original gauge/string dualities have only CFT duals, certain generalizations exhibit renor-

malization group flow and confinement. The hard-wall model we consider below is a trivial

generalization of the AdS5/CFT4 correspondence where a confinement scale is introduced

by hand by removing a portion of the interior of AdS5. We will consider high energy 2 → 3

scattering processes in this cut-off geometry.

Regge phenomena in gauge theories well-described by the gauge/string correspondence

were studied by a number of authors. The methods used in this paper appeared first in the

small-x region of deep inelastic scattering [3] and were fleshed out much more fully in [5].

There, following ideas of ref. [3], the Regge limit of 2 → 2 scattering was studied. In a

regime where N is taken very large and λ and s are taken very large in a correlated way,

with t fixed, the scattering amplitudes are dominated by single-Pomeron exchange. The

Pomeron is a coherent color-singlet object built from gluons whose properties are universal;

it is the object which is exchanged by any pair of hadrons that scatter at high energy and

large impact parameter. In the dual string theory, the Pomeron is not the graviton but

the graviton’s Regge trajectory.

While string theory in flat space in the Regge limit exhibits Regge scaling sα(t), in

the gauge/string duality context this flat-space string amplitude must be corrected by the

warping of the metric and finally convolved with supergravity wave functions representing
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the scattered hadrons. Moreover, as was argued in ref. [5], when ln(s/Λ2) (Λ of order the

confinement scale) becomes large compared to
√
λ, the local form of the string amplitude

becomes inappropriate, and the local Mandelstam variable t must be promoted to a dif-

ferential operator that acts on these supergravity wave functions. This in turn leads to

diffusive behavior of the scattering strings. This diffusion is the strong-coupling analogue

of the diffusive behavior seen at small λ in the calculations of BFKL [6]. In gauge/string

duality, the radial direction of AdS5 has a dual interpretation as an energy scale in the field

theory, and the diffusion happens in this radial direction as well as in the directions tran-

verse to the scattering direction. In BFKL, the role of the radial dimension is played by a

transverse momentum variable circulating in the ladder graphs of the Regge resummation.

In this paper, we apply the methods of ref. [5] to a more elaborate problem. We study

2 → 3 scattering, in a regime where two Pomerons are emitted by the initial-state particles

and fuse to make a third particle. Here we will consider this particle to be a glueball:

a normalizable state in the AdS5 space. Experimentally one might also be interested in

quarkonium states, or a Higgs boson, but we will not consider these in this paper.

We begin in section 3 by reviewing the kinematics for these 2 → 3 processes. Instead of

two independent Mandelstam variables s and t, five point amplitudes involve the variables

s, s1, s2, t1, and t2. The double diffractive limit, or double Regge limit, we consider

consists of taking s and si very large compared to Λ2 while keeping the ti small. In double

diffractive scattering in the center-of-momentum frame, the hadrons scatter by very small

angles. Since we will explore this 2 → 3 process in the hard-wall model, we review details

of this model in section 4. We also present the glueball and hadron wave functions that

will be used in the calculations.

The next step is to construct the five point, flat space, string theory amplitude which we

do in appendix A. While the four point amplitude, or Virasoro-Shapiro amplitude, is well

known and relatively simple, the corresponding closed string five point amplitude is vastly

more complicated and less well known. In general, using the techniques of [11], the five

point amplitude can be expressed as a quadratic polynomial in generalized hypergeometric

functions 3F2. Fortunately, we only need this amplitude in the double diffractive limit, and

our discussion is taken in large part from [12].

In section 5, given the flat space amplitude in the double diffractive limit, we use the

procedure outlined in [5] to convert this flat space amplitude into a curved space amplitude.

The amplitude may be expressed as an integral of the glueball wave function over a source

function R which is a property of the two fusing Pomerons. Many properties of this 2 → 3

process can be evaluated independently of the produced fifth particle by studying R.

In section 6 we pause to explain the constraints placed on the various parameters of

the scattering process by the kinematics.

We evaluate this double diffractive scattering amplitude in various regimes of ti and

si in section 7. We begin by considering ti = 0 for large values of ln(s/Λ2) and ln(si/Λ
2).

In this case, we find that the scattering amplitude, an even function of rapidity, y, is a

function only of the combination y/
√
λ. In other words, at large λ, the amplitude is nearly

independent of y. This is consistent with the corresponding dual gravity amplitude.

Next, we consider arbitrary ti and ln(s/Λ2), ln(si/Λ
2) ≫ 1. For large ti we find
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Figure 1: Momentum flow diagram for double diffractive scattering. The hadrons have momenta

k1, . . . , k4 and the glueball has momentum k5. Pomerons are represented by the internal lines in

the t1 and t2 channels.

power-law behavior fall-off with ti, without any sign of the exponential Regge peak in the

forward region. The Regge peak is only observed for smaller values of ti and ln(si/Λ
2), as

a transient rather than an asymptotic phenomenon. This is roughly consistent with the

hard scattering results of [2].

Finally, we present a concluding discussion in section 8.

3. Double diffractive kinematics of 2 → 3

In this paper, we calculate 2 → 3 scattering amplitudes in the double diffractive limit. We

have in mind a process similar to pp→ pp+ glueball. The incoming hadrons are deflected

by very small angles from their original trajectories and produce a glueball via double

Pomeron exchange.

Working in − + ++ signature, we will use generalized Mandelstam variables

s = −(k2 + k3)
2, (3.1)

s1 = −(k5 + k1)
2, (3.2)

s2 = −(k4 + k5)
2, (3.3)

t1 = −(k1 − k2)
2, (3.4)

t2 = −(k3 − k4)
2, (3.5)

and the five masses m2
i = −k2

i . Our conventions are shown in figure 1. We will assume

that the energies are large enough to neglect the external hadron masses. The glueball has

mass m5 ≡ m.

The double diffractive limit we consider is the double Regge limit [13] defined as

s, s1, s2 → ∞ with s≫ s1, s2 and t1, t2,
s1s2
s

fixed. (3.6)

In this limit, and going to the center-of-momentum frame, it is helpful to parametrize the

momenta in the following way:

k2 = (E, 0, 0, E), k3 = (E, 0, 0,−E),

k1 = ξk2 + χk3 + k1⊥, k4 = ξk3 + χk2 + k4⊥,

k5 = (1−ξ−χ)k2+(1−χ−ξ)k3−(k1⊥+k4⊥). (3.7)
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The momenta k1⊥ and k4⊥ are defined to be orthogonal to k2 and k3. The eight scalar

parameters introduced above must be expressable in terms of Lorentz invariants and m.

Putting momenta on-shell and solving algebraically gives

E =
√
s/2, χ = −t1/s, χ = −t2/s,

ξ = 1 + (t1 − s2)/s, ξ = 1 + (t2 − s1)/s,

k2
1⊥ = −t1 − t1(t1 − s2)/s, k2

4⊥ = −t2 − t2(t2 − s1)/s,

2k1⊥ ·k4⊥=
s1s2
s

−m2+
2t1t2
s

+t2

(
1− s2

s

)
+t1

(
1− s1

s

)
. (3.8)

The conditions on the Mandelstam variables in the double diffractive limit translate into

the relations ξ, ξ ≈ 1 and χ,χ ≪ 1. These relations in turn can be understood physically

as the fact that the hadrons are deflected by very small angles in this limit.

It is also convenient to define

m2
⊥ ≡ m2 + (k1⊥ + k4⊥)2. (3.9)

This is the effective mass of the glueball, as viewed in the x+–x− light-cone plane. In terms

of Mandelstam variables,

m2
⊥ =

s1s2
s

(
1 − t1 − t2

s2

)(
1 +

t1 − t2
s1

)
≈ s1s2

s
(3.10)

in the double diffractive limit.

The rapidity y of the glueball is defined by tanh y = k5z/E5. In terms of the Mandel-

stam variables, the rapidity can be expressed as

y =
1

2
ln

(
E5 + k5z

E5 − k5z

)
=

1

2
ln

(
s2 + t2 − t1
s1 + t1 − t2

)
≈ 1

2
ln

(
s2
s1

)
. (3.11)

In the center-of-momentum frame, for a massless particle, the rapidity is related to the polar

angle (relative to the beam axis) via ey = cot(θ/2): large |y| corresponds to θ ≈ 0 or π.

4. Hard-wall model

The hadronic wave functions that are needed in our computations depend on how confine-

ment is incorporated into the gauge/string framework. In this paper, we choose to use the

hard-wall model.1 The model imposes a sharp cutoff on the AdS5 radial coordinate z at

some scale z0,

ds2 =
R2

z2
(ηµνdx

µdxν + dz2) + ds2W , 0 < z < z0. (4.1)

The line element ds2W gives the metric on the five-dimensional transverse space, which

in simple examples is just S5. The cutoff establishes a mass gap Λ = 1/z0. To a four-

dimensional observer, z → 0 is the UV, while z → z0 is the IR.

1The hard-wall model is not a fully consistent SUGRA theory as it does not satisfy the supergravity

equations of motion. However, past calculations have shown that the model is useful for capturing model-

independent behavior of confining gauge theories [2, 3, 5, 9, 10, 14].
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Scalar hadron wave functions are solutions to the ten-dimensional Klein-Gordon equa-

tion using the metric (4.1). By separation of variables the solutions can be written as

eik·xφ(z)f(θ), where k is the gauge theory four-momentum. For simplicity, we take f to

be a constant mode on the compact space W . The function f plays no role in our calcula-

tions. When we introduce diffusion kernels, it will be convenient to use the dimensionless

coordinate u = ln(z0/z), 0 ≤ u <∞. To a four-dimensional observer, u→ 0 is the IR and

u→ ∞ is the UV.

The radial-“Kaluza-Klein” normalizable mode corresponding to a hadron is given

by [15]

φ(u) =

√
2

Λ
√

VolWR3/2
e−2uJ∆−2([m/Λ]e−u)

J∆−2(m/Λ)
, (4.2)

where VolW is the volume of the compact space W , ∆ is the conformal dimension of the

dual gauge theory operator, and m is the four-dimensional mass given by m/Λ = ζ∆−3;n.

ζk;n denotes the nth zero of the Bessel function Jk(x).
2

In figure 1, the hadron with momentum k5 represents the glueball. In non-Abelian

gauge theory, a scalar glueball can be created by the operator O = TrFµνF
µν . According

to the AdS/CFT correspondence, this operator is dual to a massless closed string dilaton

state propagating in the ten-dimensional bulk whose AdS radial profile is given by the

normalizable mode (4.2) with ∆ = 4.

The external hadrons with momenta k1, . . . , k4 in figure 1 are all scalar normalizable

modes φ0 of the form (4.2) with ∆ = ∆0 and mass m0. Although they are not baryons,

and are scalars rather than fermions, they are reasonable surrogates for protons, as their

profile in the radial AdS direction is appropriate for an object built out of a small number

of valence partons (and created by an operator of small twist [2]).

5. S-matrix

We want to compute the S-matrix, S, for hadron scattering in four dimensions. In string

theory, at leading order in 1/N and 1/
√
λ, this is given roughly by a path integral over

a spherical worldsheet embedded in the cut-off AdS5 × W space, with appropriate ver-

tex operators representing the external hadron states. For scattering processes in d flat

dimensions, we also define the amplitude Td by

S = i(2π)dδd(
∑

ki)Td. (5.1)

Using a prescription given in [5] we determine S by integrating T10 (the scattering amplitude

for closed strings in ten-dimensional Minkowski space) with the product of hadron wave

functions over all coordinates in the cut-off AdS5 ×W ,

S =

∫

AdS5

d4x dz

∫

W
d5θ

√
−G T10(k̃1, . . . , k̃5)

5∏

i=1

eiki·xφi(z). (5.2)

2We use the generalized Neumann boundary conditions ∂u

“

e−(∆−4)uφ(u)
”

= 0 at u = 0 employed

in [15], which imply φ′(0) = (4 − ∆)φ(0). These reduce to ordinary Neumann boundary conditions only

in the case ∆ = 4. The normalization is fixed by the condition VolW R3Λ2
R

∞

0
du e2uφ(u)2 = 1. See the

appendix of ref. [2] for a derivation of this normalization condition.
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The factor
√
−G is the square root of the determinant of the metric on AdS5 ×W . It is

important to distinguish the two sets of momenta that arise in (5.2). The ki are the four-

momenta of scalar hadrons in the dual gauge theory defined on the boundary of AdS5, while

the k̃i can be interpreted as (center-of-mass) ten-momenta of closed strings propagating in

the AdS5 ×W background at a given value of z. The relationship between ki and k̃i will

be discussed later in this section.

Our first task is to compute the tree-level string amplitude T10 for five external states.

Rather than use the closed superstring, we calculate in appendix A an equivalent amplitude

T26 for the closed bosonic string. In the double Regge limit, where exchange of the leading

Regge trajectory in the t̃1 and t̃2 channels dominates, we expect bosonic and superstring

amplitudes to be essentially identical, up to overall constants and subleading effects which

are not important for us here. Moreover, in this limit the amplitude will not depend sen-

sitively on the precise vertex operators used to represent our hadrons on the external legs.

In particular, only their energy-momentum tensor is important, as a source for the emitted

Pomeron. Thus there is no cost in using tachyons as the initial state vertex operators in

the 2 → 3 scattering process. We must be more precise about the fifth particle (the “glue-

ball”) whose coupling to gravitons, and therefore to two Pomerons, contributes nontrivial

kinematic factors to the amplitude. We use the dilaton as the particle produced by the

colliding Pomerons; this corresponds to producing a scalar glueball in the gauge theory.

Thus, we calculate the bosonic closed string amplitude T26 for four tachyons and one

dilaton in the double Regge limit, with the dilaton singled out as the produced particle.

In appendix A, it is shown that T26 can be written as a power series in the dimensionless

parameter α′m̃2
⊥. Here m̃2

⊥, the ten-dimensional generalization of m2
⊥, is approximately

a ratio of ten-dimensional Mandelstam invariants, s̃1s̃2/s̃, in the double Regge limit. As

we will see in section 6, the physics forces us into a regime where this parameter is much

less than 1. The leading term in the series for T26 is given in eq. (A.26). We modify

the normalization of (A.26) so that it may be interpreted as a ten-dimensional scattering

amplitude, taking gc ∼ α′2gs. To leading order in α′m̃2
⊥ and up to a numerical factor,

T10 ∼ α′5g3
s (5.3)

×
[ (

e−iπ/2α
′s̃
4

)2+α′et1/2(
e−iπ/2α

′s̃2
4

)α′(et2−et1)/2

Π(α′ t̃1/4, α
′(t̃2 − t̃1)/4)

+

(
e−iπ/2α

′s̃
4

)2+α′et2/2(
e−iπ/2α

′s̃1
4

)α′(et1−et2)/2

Π(α′t̃2/4, α
′(t̃1 − t̃2)/4)

]

where

Π(x, δ) = (x+ δ)
Γ(−1 − x)

Γ(2 + x)

Γ(−δ)
Γ(1 + δ)

. (5.4)

It was shown in [5], following [2, 3], that a string amplitude in flat spacetime can

be carried over in some circumstances to an amplitude in a weakly-curved spacetime.

To do this one must relate the ten-dimensional Lorentz invariants in the string theory:

s̃, s̃1, s̃2, t̃1, t̃2, to the four-dimensional invariants in the gauge theory: s, s1, s2, t1, t2. We
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define an effective string length-squared as α′ divided by the AdS warp factor,3

α′
eff(z) ≡ α′z2/R2 = z2/

√
λ. (5.5)

Each kinematic quantity s̃, s̃i, t̃i in the string theory should be understood as standing in

for a differential operator, a Laplacian acting on the appropriate states. The eigenvalue of

this operator in flat space would be the usual kinematic quantity in the string theory, but

in curved space the Laplacian is not trivial. For example, the quantity α′t̃1 is a differential

operator

α′t̃1 ≡ α′∇2
P1

≡ 1√
λ

[
z
∂

∂z
z
∂

∂z
+ t1z

2 − 4

]
+O(1/λ) . (5.6)

This operator, the covariant spin-2 Laplacian appropriate for the Pomeron being exchanged

in the t1 channel [3, 5], acts on states 1 and 2; more precisely, it acts on the product of

their wave functions. Similar expressions apply for t̃2, s̃ and s̃i, but s, s1 and s2 are so

large compared to the remainder of the differential operator that we may approximate

α′s̃1 ≈ 1√
λ
s1z

2 ≡ α′
eff(z)s1 . (5.7)

and similarly for s2 and s. In summary, we take

α′s̃ ≡ α′
eff(z)s,

α′s̃i ≡ α′
eff(z)si,

α′t̃i ≡ α′∇2
Pi
. (5.8)

It is essential to retain the full differential operator in the last expresssion because α′t̃i
appears in the exponent of α′s̃, and s is taken to be exponentially large in

√
λ.

We can study the properties of α′∇2
Pi

by using coordinates in which the operator

becomes the Hamiltonian for a quantum mechanics problem, in which an analogue particle

moves in a potential. Let u = ln(z0/z) and define

Hi = −
√
λα′∇2

Pi
= − ∂2

∂u2
+ Vi(u), (5.9)

where, for the AdS metric with z = z0e
−u, the effective potential takes the form

Vi(u) = 4 − z2
0tie

−2u . (5.10)

For large negative ti the potential grows exponentially as u decreases. In a confining theory,

where confinement physics modifies the infrared (small u, large z) region, this exponential

potential provides an infrared cutoff that screens the details of the physics of confinement.

As ti → 0 this screen is removed and the precise nature of confinement comes into play.

Within the simplistic but useful hard-wall model, the potential takes the form (5.10)

all the way to u = 0, where the space ends, with an appropriate boundary condition. In

3This combination arises naturally in the worldsheet path integral. Separating bosonic fields into con-

stant zero modes plus stringy fluctuations, e.g., Z(σ1, σ2) = z + Z′(σ1, σ2), introduces an overall factor of

R2/α′z2 in front of the worldsheet action.
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this case the quantum mechanics problem is completely solved for any ti. A complete set

of eigenfunctions ψν(ti, u) with eigenvalues E = 4 + ν2 is given in appendix B.

In many circumstances it is useful to write the amplitude explicitly in terms of these

eigenfunctions. For an arbitrary functional F we use completeness of the eigenfunctions to

write

F [α′∇2
P1

]φ1(z)φ2(z) = F [−H1/
√
λ]φ1(u)φ2(u) (5.11)

=

∫ ∞

0
du′φ1(u

′)φ2(u
′)
∫ ∞

0
dνF

(
−4 + ν2

√
λ

)
ψν(t1, u)ψ

∗
ν(t1, u

′).

∇2
P1

is defined to act only on the product φ1φ2. Likewise, ∇2
P2

acts only on φ3φ4.

Using (5.11) it is straightforward to express (5.2) explicitly in the hard-wall model as

S = (2π)4δ4
(∑

ki

)
Nα′5g3

s VolWR5

×
∫ ∞

0
du

e4u

z4
0

φ5(u)

∫ ∞

0
du′φ1(u

′)φ2(u
′)
∫ ∞

0
du′′φ3(u

′′)φ4(u
′′)D(u, u′, u′′), (5.12)

where

D(u, u′, u′′) =

(
e−iπ/2α

′
eff(u)s

4

)2−2/
√

λ

D0(u, u
′, u′′) (5.13)

D0(u, u
′, u′′) =

∫ ∞

0
dν ψν(t1, u)ψ

∗
ν(t1, u

′)
∫ ∞

0
dω ψω(t2, u)ψ

∗
ω(t2, u

′′)

×
[

e−τν2
eτ2(ν2−ω2)Π

(
−4 + ν2

4
√
λ
,
ν2 − ω2

4
√
λ

)

+ e−τω2
eτ1(ω2−ν2)Π

(
−4 + ω2

4
√
λ
,
ω2 − ν2

4
√
λ

) ]
. (5.14)

Here N is a normalization factor which, among other things, will correct for the fact that we

have used bosonic strings in place of superstrings to formulate the S-matrix. The variables

appearing in the exponentials of (5.14) are

τ =
1

2
√
λ

[
ln(α′

eff(z)s/4) − iπ/2
]
, τi =

1

2
√
λ

[
ln(α′

eff (z)si/4) − iπ/2
]
. (5.15)

These are all functions of z, but vary slowly with z. They are analogous to diffusion

times [5]. Since the integrations in (5.12) are over regions in which z is not exponentially

small in
√
λ, this variation is subleading, as long as we choose to evaluate α′

eff(z) at a

sensible place, where no large logarithms arise. It is natural to evaluate (5.15) where the

integrand of (5.12) is peaked; we will refer to this value of z as zscatt. In the double Regge

limit, the s-type Mandelstam variables are exponentially large in
√
λ, so the diffusion times

have positive real parts.

The interpretation of S given by (5.12) is straightforward (reading right to left). We

convolve pairs of hadron wave functions in the t1 and t2 channels with the diffusion kernel,

and take an overlap of the result with the glueball wave function. Indeed, it will be useful

to define the quantity

R(u) ≡ e4u

z4
0

∫ ∞

0
du′ φ1(u

′)φ2(u
′)
∫ ∞

0
du′′ φ3(u

′′)φ4(u
′′)D(u, u′, u′′) . (5.16)
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In terms of R, the S-matrix is simply

S = (2π)4δ4
(∑

ki

)
Nα′5g3

sVolWR5

∫ ∞

0
duφ5(u)R(u). (5.17)

Thus the function R, which depends on the specific external hadrons chosen and on the

kinematics, but not on the produced glueball, may be interpreted as a “source” for the

glueball state. We will refer to it here as the “double Pomeron source function.”

In (5.14) we may assume that the size of τ is sufficient to guarantee that only the eigen-

values ν, ω ≪ λ1/4 are important for the evaluation of the integral. Thus, the arguments

of Π are small and we can expand Π,

lim
x,δ→0

Π(x, δ) ∼ −1

x
− 1

δ
. (5.18)

Rearranging yields

D0(u, u
′, u′′) ≈ −4

√
λ

∫
dν ψν(t1, u)ψ

∗
ν(t1, u

′)
∫
dω ψω(t2, u)ψ

∗
ω(t2, u

′′)

× e−τ1ν2−τ2ω2

[
eτ⊥ν2 − eτ⊥ω2

ν2 − ω2
− eτ⊥ν2

ν2 + 4
− eτ⊥ω2

ω2 + 4

]
, (5.19)

where

τ⊥ ≡ −τ + τ1 + τ2 ≈ 1

2
√
λ

[
ln(α′

eff (zscatt)m
2
⊥/4) − iπ/2

]
. (5.20)

6. Discussion of parameters and limits

Our version of the double diffractive process pp → pp + glueball is fully described by the

choice of six parameters N,λ,∆0,m0,∆,m, and the five kinematic variables s, s1, s2, t1, t2.

In this work the parameters are constrained as follows. The number of colors N must

be large to ensure that the S-matrix is dominated by the lowest genus worldsheet. The

’t Hooft coupling λ must be large to be consistent with our calculation of closed strings

propagating in an AdS background with a large radius of curvature. For the glueball,

∆ = 4 and m/Λ can be any zero of the Bessel J1 function.

There are also important constraints on the kinematic variables. In the physical region,

the momenta transfer-squared t1 and t2 are negative semidefinite in any scattering process.

For Regge behavior to be relevant, we will need |s|, |s1|, |s2| to be very large compared to

Λ2; this requires the parameters τ, τ1, τ2 to be large compared to 1/
√
λ.

One apparent assumption constraining the kinematics arises in the calculation of the

amplitude T26, where we assumed α′m̃2
⊥ ≪ 1 in order to keep just the first term in a power

series solution. According to (5.8), in a warped metric this becomes the condition

α′
eff(z)m2

⊥ =
(z/z0)

2

√
λ

m2
⊥

Λ2
≪ 1. (6.1)

This would obviously be satisfied for all z if we were to impose m2
⊥/Λ

2 ≪
√
λ, or equiva-

lently, s1s2/s ≪ Λ2
√
λ. However, this condition would be much stronger than necessary.
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In fact, the physical process itself assures that α′
eff(z)m2

⊥ is never larger than one, without

additional assumptions.

The logic is the following. If we produce a glueball with mass of order Λ, then m2
⊥ itself

can only be large if either −t1 ≫ Λ2 or −t2 ≫ Λ2. This follows from the definition (3.9),

which, along with the relations t1 ≈ −k2
1⊥, t2 ≈ −k2

4⊥, assures that

m2 < m2
⊥ < m2 + 4max(|t1|, |t2|) . (6.2)

Without loss of generality, let us assume that |t1| > |t2|. But if −t1 ≫ Λ2, then it serves as

an infrared cutoff on the dynamics, causing R(z) to have support only at regions of z which

are small compared to 1/
√−t1. In our computation this arises from the potential (5.10),

which develops a −t1e−2u ∝ −t1z2 barrier at large z, forcing the physics to smaller z. In

particular, all the eigenfunctions ψν from which R(z) is built have exponentially falling

tails for z > 1/
√

|t1|. Therefore, if we take m2
⊥ large by making |t1| large, we find

α′m̃2
⊥ =

z2

√
λ
m2

⊥ <
1

|t1|
m2

⊥√
λ
<

4√
λ
≪ 1 (6.3)

where we have used eq. (6.2). Thus in our calculations we do not need to impose eq. (6.1),

because it follows automatically from the dynamics.

One corollary of this discussion is that τ⊥ ≪ 1. Clearly, from the definition of zscatt
below (5.15), it cannot be that R(zscatt) is exponentially small, except possibly in regions

that make exponentially small contributions to amplitudes. Therefore it follows that the

above constraint on α′m̃2
⊥ applies. From its definition (5.20), combined with (6.3), τ⊥ is

therefore always of order 1/
√
λ≪ 1 without further assumption.

7. Calculation in various kinematic regimes

Our goal in this section is to compute the double Pomeron source function R(u). We do

this first for the limiting case of vanishing momentum transfers, where we will observe a

minimal rapidity dependence of the amplitude, and infrared insensitivity for sufficiently

large s, s1, s2. We then consider the case of negative momentum transfers, first observing

the absence of classic Regge behavior at large τi, and then identifying it at smaller τi as a

transient phenomenon. We also find power-law fall-off at large τi and large ti, analogous

to what was seen in [2].

7.1 Zero t1, t2 and large τi

We begin by calculating the double Pomeron source function for t1 = t2 = 0. In this

regime no infrared cutoff protects the scattering process from the details of confinement,

and we do not expect the detailed results from the hard-wall model to apply generally to

all theories. Nevertheless, we may hope for universal behavior in some limited settings.

We will find that the source function is nearly flat in rapidity, for reasons which should

apply to all theories at large ’t Hooft coupling. We will also see that the source function

becomes less sensitive to the infrared as the center-of-momentum energy increases. While

– 13 –



J
H
E
P
0
8
(
2
0
0
8
)
0
1
0

this would be very interesting if it were universal, we unfortunately see no reason why this

should be the case.

In order to find R we must first calculate the diffusion kernel according to eq. (5.19).

This formula calls for the eigenfunctions of the hard-wall model Hamiltonian at t1 = t2 = 0,

which are given explicitly in the appendix by eq. (B.7). Upon simplifying, one finds that

the kernel can be written in terms of the following integrals:4

P (u, u′, τ) ≡
∫ ∞

0
dν ψ∗

ν(u)ψν(u′)e−τν2

=
e−u2

−
/4τ

2
√
πτ

+
e−u2

+/4τ

2
√
πτ

[
1 − 4

√
πτf

(
u+ + 4τ√

4τ

)]
, (7.1)

and

Q(u, u′, τ) ≡
∫ ∞

0
dν ψ∗

ν(u)ψν(u′)
e−τν2

ν2 + 4

=
e−u2

−
/4τ

8

[
f

(−u− + 4τ√
4τ

)
+ f

(
u− + 4τ√

4τ

)]

−e−u2
+/4τ√τ

[
1√
π
−
(
u+ + 4τ√

4τ

)
f

(
u+ + 4τ√

4τ

)]
. (7.2)

Here we have defined u± = u ± u′ and f(x) = ex
2
erfc(x), with the convention erfc(x) ≡

1 − (2/
√
π)
∫ x
0 exp(−t2)dt. We now have

D0

4
√
λ
≈ P (u, u′, τ1)Q(u, u′′, τ2) +Q(u, u′, τ1)P (u, u′′, τ2) +O(τ⊥). (7.3)

The diffusion kernel is then

D(u, u′, u′′)≈ 4
√
λ

(
e−iπ/2α

′
eff (u)s

4

)
2−2/

√
λ
[
P (u, u′, τ1)Q(u, u′′, τ2)

+Q(u, u′, τ1)P (u, u′′, τ2)
]
. (7.4)

If we define

P (u, τi) =

∫ ∞

0
du′φ0(u

′)2P (u, u′, τi), (7.5)

Q(u, τi) =

∫ ∞

0
du′φ0(u

′)2Q(u, u′, τi), (7.6)

then the double Pomeron source function takes the simple form

R(u) ≈ 4
√
λ

z4
0

(
e−iπ/2 z

2
0s

4
√
λ

)2−2/
√

λ

e4u/
√

λ
[
P (u, τ1)Q(u, τ2) +Q(u, τ1)P (u, τ2)

]
. (7.7)

By evaluating P and Q we can obtain an explicit formula for R. Since ∂τiQ− 4Q+P = 0,

we need only determine Q, and use P = 4Q − ∂τiQ. For the hard-wall model the hadron

4Integrals P and Q may be calculated using the method of Fourier transforms combined with the

convolution theorem.
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wave functions are Bessel functions, and we can obtain an exact expression for Q, given in

appendix C.

It is useful to rewrite the expressions above in terms not of τ1 and τ2 but τ1 ± τ2.

Eq. (5.20) implies that τ1 + τ2 = τ + τ⊥ ≈ τ , since τ⊥ is very small. In the double

diffractive limit, the difference τ2 − τ1 is proportional to the rapidity y of the glueball,

defined in (3.11),

y =
√
λ(τ2 − τ1) , (7.8)

where we used |t1|, |t2| ≪ s1, s2. Since τi is positive the range of allowed rapidity is finite

but very large, −τ
√
λ < y < τ

√
λ.

By construction R is symmetric in τ1 and τ2, so it must be an even function of rapidity.

Meanwhile the rapidity y can only appear in the ratio y/
√
λ. This means that the shape

of R(u) is nearly constant for rapidities y ≪
√
λ. This follows essentially from the fact

that the gravitational scattering amplitude to which our calculation reduces in the λ→ ∞
limit is rapidity-independent.

Let us now discuss the main features of the double Pomeron source function. R(u)

vanishes in the UV as u → ∞. For large u, the Gaussians from Q and P (see eqs. (C.4)

and (C.5)) dominate giving

R(u) ∼ exp

[
−u

2

4

(
1

τ1
+

1

τ2

)]
= exp

( −τu2

τ2 − y2/λ

)
. (7.9)

Many aspects of R(u) that are true throughout the Regge regime can be understood

qualitatively by considering the limit of large diffusion times τ, τ1, τ2 ≫ 1, and focusing

on the behavior at small u ≪ τi. (The behavior at larger u is typically irrelevant for our

computation, because of the exponential fall-off of the glueball wave function at large u.)

In this limit, we have from eq. (C.11) that the u and τi behavior of R(u) is given by

R(u) ∼ (1 + 2u)2

(τ1τ2)3/2
exp

[
−u

2

4

(
1

τ1
+

1

τ2

)]
. (7.10)

The τ
−3/2
i behavior was explored in ref. [5]. At ti = 0 it arises from the reflection off the

hard-wall barrier. For modes with slow variation in u, which dominate at large τi, the

boundary condition required by energy-momentum conservation forces the incoming and

outgoing waves to interfere destructively, cancelling the leading τ
−1/2
i behavior expected in

diffusion. This destructive interference persists for ti ≪ −Λ2, as the exponential behavior

of the effective potential acts as a Dirichlet boundary condition. (Note however that at

extremely large u≫ τi the inverse square-root behavior is not cancelled.)

As a function of u, R will have a peak at umax = 1
4 [
√

1 + 64τ1τ2/τ − 1]. When the

glueball has rapidity y = 0, the peak location scales as umax ∼ √
τ , so that the height

of the peak scales as R(umax) ∼ τ−2. Meanwhile, at the hard-wall, R(0) ∼ τ−3. The

peak-to-wall ratio is
R(umax)

R(0)
≈ 4

e
τ. (7.11)

At non-zero rapidity, keeping the leading correction |y| ≪ τ
√
λ, the peak moves to umax ∼√

τ [1 − (y2/2τ2λ)] and the ratio (7.11) scales as 4
eτ [1 − (y2/2τ2λ)].
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Figure 2: The dimensionless double Pomeron source function R̂, defined in eq. (7.12), plotted

versus the AdS radial coordinate u. Each plot is at a fixed value of τ and exhibits R̂ at different

rapidities. The left plot has τ = 1 and shows curves for y = 0 (solid), 0.5
√
λ (dashed), and 0.9

√
λ

(dot-dashed). The right plot has τ = 10 and shows curves for y = 0 (solid), 5
√
λ (dashed), and 8

√
λ

(dot-dashed). For the external hadrons, we have chosen ∆0 = 3, m0/Λ = 2.405 . . .. Since λ ≫ 1,

there is a large range in rapidity over which R̂ is nearly rapidity-independent.

We learn two important facts. At fixed central rapidity, and as τ increases, the max-

imum of R(u) moves away from the confinement region near u = 0. This means that its

computation becomes increasingly insensitive to the details of confinement. Furthermore,

the ratio of the maximum of R(u) to its value in the confining region becomes large. This

means that the confining region plays a smaller and smaller role in the computation of the

source function. Unfortunately, we currently see no argument that the insensitivity of this

computation to the confining regime should apply generally to most or all large-λ gauge

theories. Instead, it appears to be a special feature of the hard-wall model.

In figure 2 we plot a dimensionless version of the double Pomeron source function:

R̂(u) ≡ z4
0

4
√
λ

(
e−iπ/2 z

2
0s

4
√
λ

)−2+2/
√

λ

e−4u/
√

λ

( √
2

Λ
√

VolWR3/2

)−4

R(u). (7.12)

We have divided out the leading dependence on s and the dependence on the hadron wave

function normalizations. We have also divided out a factor of e4u/
√

λ, which might seem

odd since this has explicit u dependence. However, this factor is 1 at small u (since λ≫ 1)

and irrelevant at large u (since the glueball wave function falls exponentially at large u).

The definition (7.12) is convenient in that it makes the function R̂ positive-definite and

independent of λ, except through the dependence on the rapidity.

Figure 2 shows R̂ at three different values of y; the left plot is for τ = 1 and the right

plot for τ = 10. The peak, whose position in u scales as
√
τ , and the ensuing Gaussian

fall-off (7.9) beyond the peak, are clearly visible. As τ increases, the height of the peak

decreases, consistent with the (τ1τ2)
−3/2 scaling of the amplitude. However, the relative

height of the peak compared to the value of R̂(0) increases. Finally, as we change y at

fixed τ , the shape of R̂(u) changes little for |y| ≪ τ
√
λ/2.

7.2 Finite t1, t2 and large τi: absence of a Regge peak and power-law behavior

The scattering amplitude for our diffractive process is peaked at ti = 0 (within the physical

regime). In classic Regge physics, one might expect an exponential fall-off with negative ti.
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We will see in the next section that this is true, but only at small τi. In this section we will

show that at large τi, and for negative ti, the amplitude decreases like a power of ti, as in [2].

First, we show Regge behavior is absent at small negative ti. Starting with (5.12), we

calculate the amplitude as in section 7.1. In particular, we must compute integrals similar

to those in (7.1) and (7.2), where there is now additional dependence on the ti. We can only

compute P and Q analytically when τ, τ1, τ2 are large enough that the Gaussian factors

rapidly cut off the integrals over ν. The eigenfunctions of (5.9) for all values of ti in the

hard-wall model are given in appendix B. We expand them to lowest order in ν, to find

ψ∗
ν(ti, u)ψν(ti, u

′) =
2

π
ν2[K0(ρie

−u) +H(ρi)I0(ρie
−u)] (7.13)

×[K0(ρie
−u′

) +H(ρi)I0(ρie
−u′

)] +O(ν4),

where ρi ≡
√−ti/Λ and

H(ρi) =
−2K0(ρi) + ρiK1(ρi)

2I0(ρi) + ρiI1(ρi)
. (7.14)

H(ρi) vanishes exponentially as ρi approaches infinity; it diverges logarithmically when ρi

goes to 0, though ψν(0, u) is finite.

We approximate (5.19) as

D0(u, u
′, u′′) ≈ 2

√
λ

∫
dν ψν(t1, u)ψ

∗
ν(t1, u

′)
∫
dω ψω(t2, u)ψ

∗
ω(t2, u

′′)e−τ1ν2−τ2ω2
(7.15)

where we have taken τ⊥ to be negligible and kept the ν and ω dependence only in the

exponentials where they are multiplied by the large numbers τi. The kernel is now easily

computed,

D0(u, u
′, u′′) ≈

√
λ

2π(τ1τ2)3/2
[K0(ρ1e

−u) +H(ρ1)I0(ρ1e
−u)][K0(ρ1e

−u′

) +H(ρ1)I0(ρ1e
−u′

)]

×[K0(ρ2e
−u) +H(ρ2)I0(ρ2e

−u)][K0(ρ2e
−u′′

) +H(ρ2)I0(ρ2e
−u′′

)]. (7.16)

Notice that the dependence on u, u′, u′′ completely factorizes. Also, the dependence on τ

and τi completely factorizes from the dependence on ti. This second factorization implies

that there is no Regge behavior s
α(ti)
i ∼ eα(ti)τi in the large τ and τi limit. Looking back, we

see this factorization of the ti and τi dependence stems from the factorization of the ν and

ρi dependence in eq. (7.13). As long as ψ∗
ν(ti, u)ψν(ti, u

′) has a power series expansion in

ν near ν = 0, this factorization, and the corresponding loss of Regge behavior, will always

occur at large τi, for any large-λ theory.

Before continuing we should note a subtlety. The D0 kernel appearing in the above

expression is unbounded as any of u, u′, u′′ increase, which might seem problematic. How-

ever, in deriving this expression we used an approximation which breaks down at large u,

u′ or u′′. One can see explicitly that when ti = 0, the corresponding expression (7.3) is

strongly damped at large u, u′, u′′ by Gaussian factors. Here, our use of an expansion

in ν, assuming the τi are large, is essentially (after integrating over ν) an expansion in

u2/τ . This is not valid where the Gaussian factors are important, so D0 in this regime has

no large-u cutoff. However, the hadron and glueball wave functions, which are integrated
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against D0 to obtain the source function and the S-matrix, have their own exponential

tails in u. These tails cut off the integrals at u ∼ 1, long before our approximation breaks

down. We therefore proceed without concern.

Next, we show that the scattering amplitude falls off as a power law in ti/Λ
2, another

universal phenomenon. The presence of falling powers is easy to understand. At large

negative values of ti, the effective potential in the Hamiltonian (5.9) develops an expo-

nential barrier that forces the corresponding analogue particle away from the wall. In the

calculation of the scattering amplitude, the eigenfunctions of this Hamiltonian are inte-

grated against the wave functions of the glueball and external hadrons, which have falling

power-law tails in z at small z (exponentially falling tails in u at large u). For large values

of ti, the eigenfunctions lack support near the wall, and the computation is dominated by

the power-law tails of the wave functions. Once this is true, the entire computation scales

with ti, giving the amplitude a power-law dependence on ti.

To demonstrate this explicitly, we insert (7.16) into (5.16). We are left with two

factorized integrals over u′ and u′′, which we will denote I ′ and I ′′. In the limit of large ρi,

H(ρi) vanishes, so the integral I ′ becomes

I ′ ≈
∫ ∞

0
du′ φ0(u

′)2K0(ρ1e
−u′

) =

∫ z0

0

dz′

z′
φ0(z

′)2K0

(√
|t1|z′

)
. (7.17)

The integral I ′′ is identical with t2 replacing t1. Since the function K0(x) is exponentially

damped for large x, the integrand only has support for z′ ≪ 1/
√

|t1|. In this region, the

external hadron wave function φ0(z
′) has a power-law tail:

φ0(z
′) ≈

√
2Λ√

VolWR3/2

(m0/2)
∆0−2

Γ(∆0 − 1)J∆0−2(m0/Λ)
z′∆0 (z′ ≪ m−1

0 ∼ z0). (7.18)

(Recall that, for low-lying external hadron states, m0 ∼ Λ = 1/z0.) With this approxima-

tion, I ′ can be evaluated by extending the range of integration over z′ from zero to infinity.

Inserting the integrals I ′ and I ′′ into the definition of R(u), eq. (5.16), gives

R(u)≈ 2χ(∆0,m0)

πVol2WR6
√
λ

(
e−iπ/2 s

4Λ2

)2−2/
√

λ
(
m4

0

t1t2

)∆0 e4u/
√

λ

(τ1τ2)3/2
K0(ρ1e

−u)K0(ρ2e
−u) (7.19)

where

χ(∆0,m0) =

(
2(∆0 − 1)

J∆0−2(m0/Λ)

Λ2

m2
0

)4

. (7.20)

This expression is valid in the region of our approximation, u ≪ √
τ , as noted above.

Note the almost-quadratic growth of the amplitude with s, the power-law dependence

on the ti, and the (τ1τ2)
−3/2 factor, which provides subleading s dependence and limited

rapidity dependence. The two Bessel functions determine the shape of the function in u

and contribute a subleading dependence on the ti. Since ρi =
√
|ti|/Λ ≫ 1, these functions

assure an exponential cutoff of the source function near the wall at u = 0. The growth of the

source function as u → ∞ is cut off by the breakdown in our approximation. But before

this happens, the growth is more than compensated by a falling glueball wave function

(φ5(z) ∼ z4) in our current computation.
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We can now compute glueball production at large ti, using the above Pomeron source

function. The amplitude involves the integral of the glueball wave function against the

Pomeron source function. The factors of K0(
√

|ti|z) are damped exponentially near the

wall, so the glueball wave function can be approximated by its power-law tail. Also, the

factor e4u/
√

λ can be replaced by 1.

The scattering amplitude (5.1) obtained from (5.17) is

T4 = −i Nα′5g3
s√

2πVol
3/2
W R5/2

√
λ(τ1τ2)3/2Λ

(
e−iπ/2 s

4Λ2

)2−2/
√

λ
Ω(t1, t2) (7.21)

where

Ω(t1, t2) ≈
2χ(∆0,m0)

J2(m/Λ)

(m
Λ

)2
(
m4

0

t1t2

)∆0 Λ4

(t1 − t2)2

[
−1 +

1

2

t1 + t2
t1 − t2

ln

(
t1
t2

)]
. (7.22)

The amplitude is well-behaved as t2 → t1, since

lim
t2→t1

Ω =
χ(∆0,m0)

6J2(m/Λ)

(m
Λ

)2 m4∆0
0 Λ4

t2∆0+2
1

. (7.23)

For equal momentum transfers, the scaling of our amplitude in terms of gauge theory

variables is simply

T4 ∼ 1

ΛN3

s2−2/
√

λ

t2∆0+2
1

(τ1τ2)
−3/2. (7.24)

Although we are not quite in the same limit, we may compare (7.24) with the high

energy, fixed-angle scattering result of ref. [2]. At large s and ti but fixed s/ti, eq. (14) of

ref. [2] indicates that in 2 → 3 scattering of four objects created by operators of dimension

∆0 and one of dimension ∆ = 4, the amplitude would scale as

T4 ∼ λ∆0+1/2

ΛN3

(
Λ

p

)4∆0

(7.25)

where p is a characteristic momentum scale for the 2 → 3 scattering process. General

requirements assure the overall power of gs ∼ 1/N is the same in both cases as well as

the 1/Λ sitting in front. For low-lying hadrons m ∼ m0 ∼ Λ. Our amplitude scales

as s2t−2∆0−2
i , exhibiting a power law suppression in momentum with the same overall

exponent as (7.25); both scale as (Λ/p)4∆0 . However, the dependence on
√
λ = R2/α′ in

the two expressions is different. This is because the dynamics of string theory itself — the

exponential suppression of hard scattering — cuts off the amplitude in [2], which introduces

factors of α′. Here the cutoff on the amplitude occurs through the K0 Bessel functions

above, through the large momentum transfers t1 and t2. These are independent of α′.

7.3 Small t1, t2 and small τi: classic Regge phenomenology

In the classic Regge regime of s≫ |t| ∼ Λ2, experiments show hadronic amplitudes exhibit

Regge behavior, S ∼ sα(t) with α(t) approximately linear in t. We have just seen that for

large τi this behavior is absent. What has happened? In [2] it was argued that for fixed
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t the classic Regge behavior of the amplitude is a transient phenomenon present only for

a certain range of s. When s is sufficiently large, a transition takes place and power-law

behavior is restored. Here we will see a similar phenomenon. In this section, we show that

for small enough ti and τi, one finds approximate Regge behavior, as a transient effect

that gives way, for larger τi, to the power-law behavior seen in the previous section. More

specifically, we will work in the regime

1√
λ
≪ τi ≪ 1 and

τi|ti|
Λ2

∼ 1 . (7.26)

The lower bound on τi is the double Regge limit we have taken from the beginning. The

upper bound on τi keeps the diffusion times short enough that the potential (5.10) can

be approximated by its first few terms in a Taylor series expansion. The second relation

keeps the product τi|ti| large enough that we can distinguish between exponential and

linear behavior of the amplitude as a function of ti. We will argue that the presence of this

window, where Regge scaling can be seen, is universal and is not sensitive to the details of

the hard-wall model.

The generality of the phenomenon can be seen from the following argument. The

source function R(u) involves the combination of two Pomerons, one from each of the

external hadrons,

R(u) ∼ 〈u|e−H1τ1 |φ2
0〉〈u|e−H2τ2 |φ2

0〉 , (7.27)

each of which requires a diffusion-kernel calculation of the matrix element

〈u|e−Hiτi |φ2
0〉 =

∫
du′〈u|e−Hiτi |u′〉〈u′|φ2

0〉 (7.28)

where Hi is the Hamiltonian (5.9) and |φ2
0〉 is the state whose wave function is φ2

0(u) in

the position basis. That R(u) is given by (7.27) can be seen from examination of (5.16)

and (5.19).

For small τi and ti we may evaluate the matrix element (7.28) semiclassically, writing

it as a path integral over all paths between u and u′, and expanding around the classical

path of minimal Euclidean action. Defining the average position ū = (u + u′)/2 we may

rewrite the potential as

Vi(u
′) ∼ 4 − z2

0tie
−2ū[1 − 2(u′ − ū) + 2(u′ − ū)2 + · · · ] . (7.29)

Working to linear order in the potential, the matrix element is then

〈u|e−Hiτi |φ2
0〉 =

∫
du′ exp

[
z2
0tiτie

−2ū
]
e−4τiφ2

0(u
′)
∫

Dy e−
R τi
0 ds[ 1

4
ẏ2+ 1

2
β(y−ū)]. (7.30)

Here β = 4z2
0tie

−2ū, and the boundary conditions on the path integral are that y(0) = u′

and y(τi) = u. The classical solution is ycl(s) = 1
2βs

2 + v0s+ u′ where v0 = −1
2βτi + u−u′

τi
.
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Letting y = ycl + x, the path integral becomes5

〈u|e−Hiτi |φ2
0〉 =

∫
du′ exp

[
z2
0tiτie

−2ū
]
e
−4τi+

β2τ3
i

48
− (u−u′)2

4τi φ2
0(u

′)
∫

Dx e−
R τi
0

1
4
ẋ2ds, (7.31)

where the boundary conditions on x are x(0) = x(τi) = 0. The remaining path integral

is proportional to 1/
√
τi but is independent of ti and plays no further role. The Gaussian

factor in the u′ integral, along with the constraint on τi (7.26), constrains u′ to be near

u. Expanding the rest of the integrand around u′ = u, performing the Gaussian integral,

and dropping terms suppressed explicitly by powers of τi, we obtain, after substituting the

explicit form for φ0(u),

〈u|e−Hiτi |φ2
0〉 ∼ e−4u−bie−2u

J∆0−2([m0/Λ]e−u)2erfc

( −u
2
√
τi

)
+O(

√
τi), (7.32)

where bi = −z2
0tiτi > 0. The Pomeron source function R(u) is then proportional to (7.32)

for i = 1 times a similar expression for i = 2.

Finally, to obtain the glueball production amplitude, there is still the integral over

u to perform, (5.17), of the Pomeron source function against a glueball wave function.

That this integral leads to approximate Regge behavior, with a Regge slope that slowly

varies with ti, can be seen as follows. The complementary error functions can be replaced

by 2 everywhere in the range of integration except for u <
√
τi, a region which gives a

subleading effect in τi. The integral (5.17) is dominated by the exponential exp(−bie−2u)

and the power law tails that come from expanding the Bessel functions at large u. Thus a

reasonably good approximation to the ti dependence of the amplitude is

∫ ∞

0
duφ5(u)R(u) ∼

∫ ∞

0
du e−be−2u−2Mu =

1

2
b−M (Γ(M) − Γ(M, b)) , (7.33)

where Γ(a, z) ≡
∫∞
z ta−1e−tdt is the incomplete gamma function, b ≡ b1 + b2, and M ≡

2∆0 + 2. Expanding this result at large M leads to approximate Regge behavior, e−b1−b2 ,

where we recall that bi ∝ −z2
0tiτi.

In sum, we find approximately exponential behavior in the window (7.26), and therefore

Regge behavior of the amplitude, with a Regge slope of order 1/
√
λΛ2. Once τi or ti

becomes large, however, this argument breaks down, Regge behavior is lost, and the physics

enters the regimes discussed in sections 7.1 and 7.2.

8. Discussion

Using the hard-wall model for gauge/string duality, we studied glueball production from

hadron scattering in the double diffractive limit. String theory provides a new window

into this regime, which is not accessible using perturbative QCD. A principal objective of

5Keeping the quadratic term in the potential Vi(u
′) will produce contributions to the transition am-

plitude that are subleading in τi. One might worry that it is inconsistent to consider the quadratic ẋ2

fluctuations without the x2 fluctuations. Keeping the x2 fluctuations, the quantum determinant scales as

|βi|
1/4csch(2

p

2|βi|τi)
1/2 which is indeed independent of βi for small τi (see for example [16]).
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this paper was to set up a formalism that can be applied to a number of 2 → 3 processes

that are more experimentally relevant than glueball production. These could include heavy

quarkonium production and Higgs production.

Our study is therefore largely of technical interest, though we also uncovered some

notable physical phenomena. We wrote our amplitudes in terms of a source function R(u),

which was independent of the glueball state and characterized the two Pomerons which

fuse to make the glueball. The amplitude is given by integrating this function against the

glueball wave function. Applying this formalism, we saw that Regge phenomena are only

present at relatively small s, s1, s2, and are lost as these quantities become large. We found

that at large s, si and small ti, the scattering amplitude becomes rapidity-independent,

a fact which arises from the rapidity-independence of the corresponding tree-level dual

gravitational amplitude. We also found the expected power-law fall-off of the amplitudes

at large momentum transfers ti, where scaling behavior is expected, as in [2].

A natural next step would be to apply this formalism to heavy quarkonium production.

Quarkonium in AdS/CFT can be modeled by adding a D-brane to the AdS cavity that fills

AdS from the boundary to some minimal radius r0 = R2/z0 [17]. The mass of the heavy

quark scales with r0, and the quarkonium supergravity wave function must live on the

D-brane. In principle one ought to consider the double Regge limit of the five point disk

amplitude for string theory in flat space, with four closed string insertions, and one open

string insertion representing the heavy meson. However, most of the important physical

effects may be captured simply by using the fact that the quarkonium wave function has

support only in the region r > r0 (z < z0) ignoring any further details. Even with

such a simple model, it might be possible to make a prediction for the relative rates of

bottomonium and charmonium production in the double diffractive limit.

Double diffractive Higgs production might be a clean way to observe the Higgs boson

(or other scalars) at the LHC. There are competing field theory models, some inspired by

flat-space string theory, which predict potentially observable cross-sections for exclusive

Higgs production at the LHC. See ref. [8] for a brief review. It is possible that gauge/string

duality might clarify some of the approximations made in these models. More concretely,

we would proceed as follows. The Higgs, which couples to FµνF
µν in the standard model

through a dimension-five operator, should be treated similarly to the scalar glueball in

our discussion above, except for one crucial difference: we should replace the normalizable

dilaton mode in supergravity, representing the glueball, with its non-normalizable counter-

part, representing the Higgs boson. This non-normalizable mode, at timelike momentum

pµ with −p2 = m2
H , is highly oscillatory. The technical challenge that lies ahead is then to

compute the fusion of two Pomerons into such a state. We expect that this challenge can

be met, and that gauge/string duality will soon contribute to the debate over diffractive

Higgs production.
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A. Bosonic tachyon/dilaton amplitude

In this appendix, we calculate the double diffractive limit of the four tachyon, one dila-

ton, tree level, closed string amplitude in bosonic string theory in twenty-six dimensional

Minkowski spacetime. We let the dilaton correspond to the fifth particle in figure 1. Fol-

lowing closely an approach described in [12], we are able to express the result both as

a power series in α′m2
⊥ and an asymptotic series in 1/α′m2

⊥. The power series result is

important for our discussion of glueball production in the paper; for glueball production,

α′m2
⊥ is effectively very small.

We use the conventions in Polchinski’s textbooks [18]. In section 5, string theory

momenta have a ˜ to distinguish them from four-dimensional gauge theory momenta. We

will not need to make that distinction here as we do not work with the four-dimensional

gauge theory momenta at all. Unlike the conventions in the main body of the paper, we

take all of the momenta ki to be ingoing.

Take four tachyon vertex operators Ti = gc :eiki·X :, i = 1, . . . , 4 with k2
i = 4/α′, and a

dilaton vertex operator D = g′cfµν :∂Xµ∂Xνeik5·X : with k2
5 = 0. The dilaton is a massless

particle that travels on lightlike geodesics so the symmetric tensor fµν must be transverse

to its momentum, kµ
5 fµν = 0. Given another lightlike vector k such that k5 · k 6= 0, we

can satisfy the constraint by taking fµν = ηµν − (k5µkν + kµk5ν)/k5 · k. The correlation

function of these vertex operators on the Riemann sphere is

〈
4∏

i=1

Ti(zi, zi)D(z5, z5)

〉
= iCX

S2g
4
cg

′
c(2π)26δ26

(∑
ki

) ∏

1≤i<j≤5

|zij |α
′ki·kj

×fµν

(
−iα

′

2

4∑

i=1

kµ
i

z5i

)
−iα

′

2

4∑

j=1

kν
j

z5j


 . (A.1)

We have used the shorthand notation zij ≡ zi − zj .

The tree-level S-matrix for the scattering of four tachyons and a dilaton is obtained by

integrating the correlator (A.1) over all possible worldsheet coordinates for the operator

insertions, weighted by a topological factor,

S = e−2λ
5∏

i=1

∫

C∪{∞}
d2zi ∆ghost

〈
4∏

i=1

Ti(zi, zi)D(z5, z5)

〉
. (A.2)

The path integral over ghost fields contributes a Jacobian ∆ghost = Cg
S2δ

2(za − z0
a)δ

2(zb −
z0
b )δ2(zc−z0

c )|zabzbczca|2 that fixes the residual PSL(2,C) symmetry left over from conformal

gauge-fixing. This gives us freedom to fix three vertex operators to arbitrary positions. A

convenient choice is z1 = 0, z4 = 1, z5 = ∞, because that makes |z14z45z51|2 = |z5|4 and
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∏
i<5 |zi5|α

′ki·k5 = 1. Since (A.1) comes with a factor of |z5|−4, the S-matrix is finite.6

T26 = C

∫
d2z2d

2z3
∏

1≤i<j≤4

|zij |α
′ki·kjfµν(k2z2 + k3z3 + k4)

µ(k2z2 + k3z3 + k4)
ν . (A.3)

We have from ref. [18] that e−2λCX
S2C

g
S2 = 8π/α′g2

c and g′c = 2gc/α
′, which leads to the

result that C = −4πg3
c . In these conventions, the coupling 2πgc = κ, where κ is the

gravitational coupling constant that appears in front of the Einstein-Hilbert action as

(2κ2)−1. Thus, we find that gc ∼ α′(d−2)/4gs where gs is the dimensionless string coupling

(which is related to the vev of the dilaton) and d is the number of dimensions in which we

work.

Make the conformal transformation u = z2/z3 and v = (z3 − 1)/(z2 − 1) to get

T26 =C

∫
d2ud2v|u|−α′t1/2−4|v|−α′t2/2−4|1−u|−α′s1/2−4|1−v|−α′s2/2−4|1−uv|α′(−s+s1+s2)/2

×fµν [k2u(1 − v) + k3(1 − v) + k4(1 − uv)]µ [c.c.]ν . (A.4)

Now take the double Regge limit given in (3.6). The dominant integration regions are near

the origins of the u and v planes. In order to demonstrate this we should first discuss the

issue of convergence. For fixed v and for real Mandelstam variables with physical signs,

there are clearly three special points in the finite u-plane where the integrand becomes

singular, u = 0, 1, v−1. Of these, the origin is benign as long as we take α′t1 < −4 so that

the singularity is integrable. The other singularities at u = 1, v−1 are not integrable for

positive s1 and s. One way to avoid this difficulty is to choose pure imaginary values for the

s-type Mandelstam variables and analytically continue the result to the physical domain.

In this scheme |1− u|−α′s1/2, |1− v|−α′s2 and |1−uv|α′(−s+s1+s2)/2 are just phases. Now if

α′t1 > −8, then the integrand vanishes sufficiently fast at infinity for the u-plane integral

to converge. Thus, the entire integral may be defined by continuation from −4 > α′ti > −8

and pure imaginary s, s1, s2. We observe that this range of momentum transfers implies

that |u|−α′t1/2−4 and |v|−α′t2/2−4 are always singular near the origins of the u and v planes.

For fixed v, the integral in u is dominated by a saddle point at u ∼ O(1/s1), which

approaches the origin in the Regge limit. Therefore, |1 − u|−α′s1/2−4 → eα
′s1(u+u)/4. Simi-

larly, for fixed u, the integral in v is dominated by a saddle point at v ∼ O(1/s2). It follows

that |1 − v|−α′s2/2−4 → eα
′s2(v+v)/4 and |1 − uv|α′(−s+s1+s2)/2 → eα

′s(uv+uv)/4. Therefore,

T26 ≈C

∫
d2u d2v|u|−α′t1/2−4|v|−α′t2/2−4 exp

[
α′s1Re(u)/2 + α′s2Re(v)/2 + α′sRe(uv)/2

]

×fµν [k2u(1 − v) + k3(1 − v) + k4(1 − uv)]µ [c.c.]ν . (A.5)

We still need to understand the consequences that the Regge limit has on the second

line of (A.5). It suffices to consider only the ηµν part of the tensor fµν since the portion

containing k corresponds to a longitudinal polarization that must decouple in physical

6Note, if z = x + iy, we define the measure factor d2z ≡ 2dx dy.
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processes [19]. Moreover, k is arbitrary and the final amplitude cannot depend on it. So

ηµν [k2u(1 − v) + k3(1 − v) + k4(1 − uv)]µ [c.c.]ν

= (k3 + k4)
2 + k2 · (k3 + k4)(u+ u) − k3 · (k3 + k4)(v + v)

+ (terms with two or more factors of u, u, v, v). (A.6)

Scaling u → u/s1 and v → v/s2 in (A.5), it is clear that only the first three terms on the

right hand side of (A.6) have the possibility of not being suppressed by a large energy.7

Since k3 · (k3 + k4) = −t2/2, the third term is actually suppressed. Using k2 · (k3 + k4) =

(t2 − s1 − 4/α′)/2, we may replace (A.6) by −t2 − s1(u+ u)/2.

For convenience we define a prototypical integral

I(a, a, b, b) =

∫
d2u d2v uauavbvb exp

[
α′s1Re(u)/2+α′s2Re(v)/2+α′sRe(uv)/2

]
. (A.7)

With a = −α′t1/4 − 2 and b = −α′t2/4 − 2, the amplitude reads

T26/C ≈ −t2I(a, a, b, b) −
s1
2

[I(a+ 1, a, b, b) + I(a, a+ 1, b, b)]. (A.8)

T26 is a function of five variables s, s1, s2, t1, t2. It is still not well-defined for physical

scattering (real s > s1 +s2 > 0 and real t1, t2 < 0) since I diverges. For a proper definition,

we extend s, s1, s2 to the complex numbers and follow a technique due to Lipatov [12]:

decompose I over different regions of the u and v planes, and for each region choose the

phases of s, s1, s2 such that they lie on the real axes with signs that ensure the convergence of

the integral. T26 is then defined by analytic continuation of s, s1, s2 to the positive real axes.

We now carry out Lipatov’s procedure for I as given in (A.7). It is convenient to

let α′ = 4. At any fixed value of (v, v) the integrand has a saddle point at (u, u) =

(−a/(s1 + sv),−a/(s1 + sv)). Similarly, for any fixed value of (u, u) the integrand has a

saddle point at (v, v) = (−b/(s2 + su),−b/(s2 + su)). These saddle points lie close to the

origin of the complex plane.

We begin by evaluating (A.7) directly which yields an asymptotic series in (α′m2
⊥)−1.

Such an expansion is useful in the regime α′m2
⊥ ≫ 1, but the glueball production process

investigated in the paper involves the opposite regime α′m2
⊥ ≪ 1. Thus, we follow by

changing the variables of integration in (A.7) to yield an integral over uv and a power

series in α′m2
⊥.

A.1 Large α′m2
⊥

We divide up (A.7) into four pieces, depending on whether u and v have positive or negative

real parts,

I =
∑

Iσu,σv , (A.9)

where we have introduced the notation σx ≡ sgn Re(x). In each domain, we choose s1 and

s2 to have opposite signs from Re(u) and Re(v), respectively. In this way, the exponential

in (A.7) damps, ensuring that the integral converges.

7A careful treatment of this scaling is given later in this appendix.
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For Iσu,σv , we choose s1 = |s1|eiπ(σu+1)/2 and s2 = |s2|eiπ(σv+1)/2 and change vari-

ables to w = e−iπs1u, w = e−iσuπs1u, z = e−iπs2v, and z = e−iσvπs2v. These peculiar

transformations guarantee that w is the complex conjugate of w and that z is the complex

conjugate of z. Then we find

Iσu,σv = (e−iπs1)
−a−1(e−iσuπs1)

−a−1(e−iπs2)
−b−1(e−iσvπs2)

−b−1JL (A.10)

where

JL ≡
∫

Re(w)>0
Re(z)>0

d2w d2z wawazbzb exp

[
−(w + w) − (z + z) +

s

s1s2
(wz + wz)

]
. (A.11)

Now JL depends only on the combination s/s1s2. Restoring α′, this is the dimensionless

ratio 4/α′m2
⊥. In the limit where α′m2

⊥ ≫ 1, we may expand the exponentials in (A.11) as

a double power series,

JL =
∑

n,m≥0

(α′m2
⊥/4)

−n−m

n!m!
K(a+ n, a+m)K(b+ n, b+m) (A.12)

where8

K(x, y) ≡
∫

Re(w)>0
d2wwxwye−2Re(w) = 2π2 csc[π(x+ y)]

Γ(−x)Γ(−y) . (A.13)

The last equality holds only for −2 < Re(x + y) < −1, but the result can be analytically

continued outside of this range. This is necessary in order to evaluate K for physical values

of α′ti as well as nonzero n and m.

A.2 Small α′m2
⊥

As we are interested in T26 in the opposite regime α′m2
⊥ ≪ 1, we shall not process the large

α′m2
⊥ result further. Instead, we make a change of variables in (A.7) in order to be able

to derive a power series in α′m2
⊥. We begin by switching the integral over u in (A.7) to an

integral over uv. We will see that this change of variables misses the saddle point at small

|v|. Thus, we will eventually need to add a second contribution where we switch instead

the integral over v to an integral over uv.

We will call Ivert the integral (A.7) in which we have replaced an integral over u by an

integral over uv. The subscript “vert” indicates that we are picking up the saddle point

in the vertical strip in figure 3. In switching the integral over u to an integral over uv, we

can divide up the domain of integration into the four regions where Re(v) and Re(uv) are

either positive or negative,

Ivert =
∑

Iσv ,σuv
vert . (A.14)

We begin by considering the domain where Re(v) and Re(uv) are both positive. This

necessitates choosing s2 = |s2|eiπ and s = |s|eiπ so that I++
vert converges. Making the change

8After changing to polar coordinates and rescaling, the integral K factors into the product of two one-

dimensional integrals and may be readily evaluated.
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Figure 3: Schematic representation of the dominant integration domains for I. The vertical strip

intersects the u-plane in a small disc surrounding the origin (u, u) = (0, 0), while the horizontal

strip intersects the v-plane in a small disc surrounding the origin (v, v) = (0, 0).

of variables w = e−iπsuv and w = e−iπsuv, we find

I++
vert=(e−iπs)−2−a−ā

∫

Re(w)>0Re(v)>0

d2wd2v wawāvb−a−1vb̄−ā−1 exp

[
−s1
s

(
w

v
+
w

v

)
+s2(v+v)−(w+w)

]
.

(A.15)

Changing variables to z = e−iπs2v and z = e−iπs2v gives

I++
vert = (e−iπs)−2−a−ā(e−iπs2)

a+ā−b−b̄JS , (A.16)

where

JS ≡
∫

Re(w)>0
Re(z)>0

d2wd2z wawāzb−a−1z b̄−ā−1 exp

[
s1s2
s

(
w

z
+
w

z

)
−(z+z)−(w+w)

]
. (A.17)

Next consider the integral I+−
vert. Now we must choose s2 = |s2|eiπ and s = |s| so that

the integral can converge. Change variables to w = suv and w = suv, then to z = e−iπs2v

and z = e−iπs2v, and finally rotate w → e−iπw and w → eiπw. This yields

I+−
vert = s−2−a−ā(e−iπs2)

a+ā−b−b̄eiπ(a−a)JS . (A.18)

Thus, for the two terms in (A.14) with Re(v) > 0 we have found

I++
vert + I+−

vert =
[
(e−iπs)−2−a−ā + eiπ(a−ā)s−2−a−ā

]
(e−iπs2)

a+ā−b−b̄JS . (A.19)

A similar analysis for the four terms with Re(v) < 0 gives

I−+
vert + I−−

vert =
[
eiπ[(b−b̄)−(a−ā)](e−iπs)−2−a−ā + eiπ(b−b̄)s−2−a−ā

]
sa+ā−b−b̄
2 JS . (A.20)
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Combining (A.19) and (A.20),

Ivert=
[
(e−iπs)−2−a−ā+eiπ(a−ā)s−2−a−ā

][
(e−iπs2)

a+ā−b−b̄+eiπ[(b−b̄)−(a−ā)]sa+ā−b−b̄
2

]
JS .

(A.21)

Like JL, JS depends only on the combination s1s2/s. Restoring α′, this is the dimen-

sionless ratio α′m2
⊥/4. As such, we may expand the exponentials in (A.17) as a double

power series,

JS =
∑

n,m≥0

(α′m2
⊥/4)

n+m

n!m!
K(a+ n, a+m)K(b− a− 1 − n, b− a− 1 −m) . (A.22)

Simplifying and using the identity π csc(πz) = Γ(z)Γ(1 − z) we obtain

JS =
4π2 sin(πa) sin [π(b− a)]

sin [π(a+ ā)] sin
[
π(a+ ā− b− b̄)

]
∑

n,m≥0

(α′m2
⊥/4)

n+m

n!m!

Γ(1 + a+ n)Γ(b− a− n)

Γ(−ā−m)Γ(−b̄+ ā+ 1 +m)
.

(A.23)

The form of (A.17) along with our power series method of evaluation makes clear why

Ivert is not equal to I. We have assumed not just that α′m2
⊥ ≪ 1 but that α′m2

⊥w/z ≪ 1

in the domain contributing to the integral. However, this condition cuts out the small z

region, which in turn corresponds to the small v region, which is where the other saddle

point of I lay. To cure this problem, we will instead switch in (A.7) the integral over v for

an integral over uv. This second term Ihorz will contain the saddle point at small v but

will miss the small u saddle point. The subscript “horz” indicates that we are now picking

up contributions from the horizontal strip in figure 3. The complete result for I is given

by the sum Ivert + Ihorz.

Repeating steps (A.14) to (A.23) for Ihorz is straightforward. In fact, Ihorz can be

obtained from Ivert simply by exchanging a ↔ b, a ↔ b, s2 ↔ s1. This completes the

solution of T26.

Suppose

α′m2
⊥ ≪ 1 (A.24)

so that it suffices to keep only the n = m = 0 term of (A.23). Then Ihorz(a + 1, a, b, b) =

Ihorz(a, a+1, b, b) = (b−a)Ihorz(a, a, b, b)/s1. Also, Ivert(a+1, a, b, b) and Ivert(a, a+1, b, b)

are each proportional to (s2/s)Ivert(a, a, b, b). When they are combined with the factor of

s1 in (A.8), they contribute at order α′m2
⊥ which we are dropping. Thus,

T26/C ≈ −t2Ivert(a, a, b, b) − t1Ihorz(a, a, b, b). (A.25)

This is our main result. Using the identity (e−iπz)x + zx = 2
(
e−iπ/2z

)x
cos(πx/2) and

restoring factors of α′ gives

T26 ≈ −64π3g3
c

α′

(
e−iπ/2α

′s
4

)2

(A.26)

×
[ (

e−iπ/2α
′s
4

)a′t1/2(
e−iπ/2α

′s2
4

)α′(t2−t1)/2

Π(α′t1/4, α
′(t2 − t1)/4)

+

(
e−iπ/2α

′s
4

)α′t2/2(
e−iπ/2α

′s1
4

)α′(t1−t2)/2

Π(α′t2/4, α
′(t1 − t2)/4)

]
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where Π is defined in eq. (5.4).

We can check that this amplitude is consistent with expectations from supergravity by

expanding the Π functions near the graviton poles at t1 = 0 and t2 = 0 using eq. (5.18).

We find

T26 ≈ 64π3g3
c

α′

×



(
e−iπ/2α

′s
4

)2+α′(t1+t2)/4 (s1
s2

)α′(t1−t2)/4 2 sinh
[

α′

4 (t1 − t2) ln
(
e−iπ/2α′m2

⊥/4
)]

α′(t1 − t2)/4

+
1

α′t1/4

(
e−iπ/2α

′s
4

)2+α′t1/2(
e−iπ/2α

′s2
4

)α′(t2−t1)/2

+
1

α′t2/4

(
e−iπ/2α

′s
4

)2+α′t2/2(
e−iπ/2α

′s1
4

)α′(t1−t2)/2
]
. (A.27)

If α′t1 and α′t2 are slightly less than 0, then the first term remains finite, whereas the sec-

ond and third terms diverge and the corresponding Regge exponents for s will be slightly

less than 2.

B. Eigenfunctions in the hard-wall model

Consider the eigenvalue problem Hiψ(u) = Eψ(u), where Hi = −∂2
u + 4 − z2

0tie
−2u and

E = 4 + ν2 for ν > 0. The form of the operator Hi was derived in [5].

As a shorthand, denote the dimensionless momentum transfer ρ = z0
√

|ti|. Then in

terms of the variable ξ = ρe−u, the Schrödinger equation is the modified Bessel differential

equation:

ξ2ψ′′ + ξψ′ −
(
ξ2 + (iν)2

)
ψ = 0. (B.1)

The general solution is in terms of modified Bessel functions of the first kind,

ψν(u) = c (Iiν(ξ) +R(ν, ρ)I−iν(ξ)) . (B.2)

The relative coefficient R(ν, ρ) is determined by the boundary condition at the wall [5],

∂ξ(ξ
2ψ)
∣∣
ξ=ρ

= 0 . (B.3)

This boundary condition follows from energy-momentum conservation. More precisely,

note that the metric fluctuation h++ = ξ−2 is pure gauge because it corresponds to a

linear reparametrization of the background metric. In order to preserve diffeomorphism

invariance in the bulk and correspondingly energy-momentum conservation in the boundary

gauge theory, we must require that this pure gauge metric fluctuation satisfy the boundary

conditions at the hard wall.

The boundary condition yields

R(ν, ρ) = − ∂ξ(ξ
2Iiν(ξ))

∂ξ(ξ2I−iν(ξ))

∣∣∣∣
ξ=ρ

= − 4Iiν(ρ) + ρIiν−1(ρ) + ρIiν+1(ρ)

4I−iν(ρ) + ρI−iν−1(ρ) + ρI−iν+1(ρ)
. (B.4)
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Note that at small ν, R(ν, ρ) → −1. This factor of minus one leads to destructive interfer-

ence in ψν(u) near u = 0. In section 7, our integrals over ψν(u)dν are dominated by small

ν, and thus this destructive interference has important effects for the qualitative features

of the scattering amplitude.

The overall coefficient c is fixed by requiring that the eigenfunctions are delta-function-

normalized in the coordinate u,
∫ ∞

0
dν ψ∗

ν(u)ψν(u′) = δ(u − u′) . (B.5)

This gives |c|2 = ν/(2 sinh(πν)).9 This normalization does not fix the phase of c. We can

choose this phase so that ψν(u) has a well-defined limit as ρ→ 0:

c(ν, ρ) = i
(ρ

2

)−iν νΓ(iν)√
2π

. (B.6)

Given (B.4) and (B.6), we have solved the eigenvalue problem Hiψ(u) = Eψ(u).

In section 7.1, we need these eigenfunctions in the ti = 0 limit. In this limit of vanishing

momentum transfer, we Taylor expand around ρ = 0 to get

ψν(u) =
1√
2π

(
e−iνu +

ν − 2i

ν + 2i
eiνu

)
+O(ρ2). (B.7)

C. Calculation of Q

The integral

Q(u, τi) =

∫ ∞

0
du′φ0(u

′)2Q(u, u′, τi) (C.1)

may be done by expanding the external hadron wave functions φ0 as a power series in e−u′

near the UV boundary of our cavity:

φ0(u
′) = e−∆0u′

∞∑

n=0

cne
−u′n . (C.2)

The leading term in the expansion will capture the UV behavior of the wave function and

higher order terms will capture the IR behavior — the details of which depend on the

precise physics of confinement. For our hard-wall model, φ0(u
′) is a Bessel function where

the odd coefficients vanish, c2n+1 = 0, while the even coefficients are given by

c2n =

√
2

Λ
√

VolWR3/2

(
m0/Λ

2

)2n+∆0−2

J∆0−2(m0/Λ)

(−1)n

n! Γ(∆0 − 1 + n)
. (C.3)

Inserting the power series for φ0(u
′) in eq. (C.1), the resulting expression for Q can be

expressed compactly as

Q(u, τi) =
∑

n,m≥0

cncm

∫ ∞

0
du′e−u′(2∆0+n+m)Q(u, u′, τi) . (C.4)

9This normalization constant can be obtained by working at small momentum transfer ρ where the

eigenfunctions look like plane waves.
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Figure 4: We plot R̂(u) for various values of τ1 and τ2. The solid curve is the exact numerical

value of R̂(u) as a function of u. The dashed curve is our approximate formula (C.11). We have

plotted a) τ1 = τ2 = 25, b) τ1 = 10, τ2 = 40, and c) τ1 = τ2 = 5. The approximation, always too

large, improves as τi increases.
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Figure 5: We plot the ratio R(umax)/R(0) as a function of τ/2 with τ1 = τ2. The points are the

numerically determined values of the ratio, while the solid line is the approximation eq. (7.11).

The integral over Q(u, u′, τi) was then done exactly using Mathematica 5.2:

∫ ∞

0
du′e−2u′xQ(u, u′, τi) =

e−u2/4τi

16

1

x− 1

[
f

(−u+ 4τi√
4τi

)
+
x2 + 3

x2 − 1
f

(
u+ 4τi√

4τi

)
(C.5)

+4
√
τif

′
(
u+ 4τi√

4τi

)
− 2

x−1
f

(
u+4τix√

4τi

)
− 2

x+1
f

(−u+4τix√
4τi

)]
,

where f ′(y) = − 2√
π

+ 2yf(y).

We now consider the limit of τi ≫ 1 with u≪ τi in which case we can obtain beautiful

formulae for Q, P , and R(u). In this limit, we apply the asymptotic expansion f(y) ∼
1√
πy

(
1 − 1

2y2 + 3
4y4 + · · ·

)
to eq. (C.5). We find that the integral, and hence the summand
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in eq. (C.4), scales asymptotically as τ
−3/2
i :

∫ ∞

0
du′e−2u′xQ(u, u′, τi) ≈

(1 + 2u)

64
√
πτ

3/2
i

1 + x

x2
e−u2/4τi . (C.6)

With these formulae and in this limit, we can understand the τi and u dependence of Q:

Q(u, τi) ≈
(1 + 2u)

64
√
πτ

3/2
i

e−u2/4τiC (C.7)

where

C ≡
∑

n,m≥0

2(2 + 2∆0 + n+m)

(2∆0 + n+m)2
cncm . (C.8)

With knowledge of the cn, C can be calculated numerically and rescales Q by some

overall constant. For example, for our hard-wall model, in the case m0/Λ = 2.405 . . . and

∆0 = 3, we find that

Q(u, τi) ≈
2

Λ2VolWR3

(
7.270 × 10−3

)
(1 + 2u)

e−u2/4τi

τ
3/2
i

. (C.9)

(For the hard wall, there is in fact an analytic formula for C as a function of ∆0 and m0/Λ

involving 2F1 functions.)

To obtain an expression for R(u), recall that P = 4Q− ∂τiQ. In the large τi limit, the

derivative is subleading, and we obtain P ≈ 4Q. R(u) in the large τi limit can then be

constructed from (7.7):

R(u) ≈ 32
√
λ

z4
0

(
e−iπ/2 z

2
0s

4
√
λ

)2−2/
√

λ

e4u/
√

λQ(u, τ1)Q(u, τ2) . (C.10)

Neglecting the e4u/
√

λ because of the large λ limit, the dependence of this expression for

R(u) on u and τi is

R(u) ∼ (1 + 2u)2

(τ1τ2)3/2
exp

[
−u

2

4

(
1

τ1
+

1

τ2

)]
. (C.11)

In order to see how accurately (C.11) approximates (7.7), in figure 4 we plot the

dimensionless version of the double Pomeron source function, defined in (7.12), for various

values of τ1 and τ2. As expected, the agreement gets better as each τi increases.

We also examine the accuracy of eq. (7.11) by plotting in figure 5 its predicted value

for R(umax)/R(0) against the actual value obtained numerically from (7.7).

References

[1] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv.

Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200];

S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical

string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109];

E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253

[hep-th/9802150].

– 32 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C231
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C231
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IJTPB%2C38%2C1113
http://arxiv.org/abs/hep-th/9711200
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB428%2C105
http://arxiv.org/abs/hep-th/9802109
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C253
http://arxiv.org/abs/hep-th/9802150


J
H
E
P
0
8
(
2
0
0
8
)
0
1
0

[2] J. Polchinski and M.J. Strassler, Hard scattering and gauge/string duality, Phys. Rev. Lett.

88 (2002) 031601 [hep-th/0109174].

[3] J. Polchinski and M.J. Strassler, Deep inelastic scattering and gauge/string duality, JHEP 05

(2003) 012 [hep-th/0209211].

[4] J.B. Kogut and L. Susskind, Scale invariant parton model, Phys. Rev. D 9 (1974) 697.

[5] R.C. Brower, J. Polchinski, M.J. Strassler and C.-I. Tan, The Pomeron and gauge/string

duality, JHEP 12 (2007) 005 [hep-th/0603115].

[6] L.N. Lipatov, Reggeization of the vector meson and the vacuum singularity in nonabelian

gauge theories, Sov. J. Nucl. Phys. 23 (1976) 338 [Yad. Fiz. 23 (1976) 642];

E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The Pomeranchuk singularity in nonabelian

gauge theories, Sov. Phys. JETP 45 (1977) 199 [Zh. Eksp. Teor. Fiz. 72 (1977) 377];

I.I. Balitsky, Effective electric charge and asymptotic freedom (in Russian), Yad. Fiz. 27

(1978) 1091.

[7] CDF collaboration, A.A. Affolder et al., Observation of diffractive J/ψ production at the

Fermilab Tevatron, Phys. Rev. Lett. 87 (2001) 241802 [hep-ex/0107071].

[8] J.R. Forshaw, Diffractive Higgs production: theory, hep-ph/0508274.

[9] J. Erlich, E. Katz, D.T. Son and M.A. Stephanov, QCD and a holographic model of hadrons,

Phys. Rev. Lett. 95 (2005) 261602 [hep-ph/0501128].

[10] L. Da Rold and A. Pomarol, Chiral symmetry breaking from five dimensional spaces, Nucl.

Phys. B 721 (2005) 79 [hep-ph/0501218].

[11] H. Kawai, D.C. Lewellen and S.H.H. Tye, A relation between tree amplitudes of closed and

open strings, Nucl. Phys. B 269 (1986) 1.

[12] L.N. Lipatov, Massless particle production in high-energy scattering of strings, Sov. Phys.

JETP 67 (1988) 1975 [Zh. Eksp. Teor. Fiz. 94 (1988) 37].

[13] R.C. Brower, C.E. DeTar and J.H. Weis, Regge theory for multiparticle amplitudes, Phys.

Rept. 14 (1974) 257.

[14] S. Hong, S. Yoon and M.J. Strassler, On the couplings of the rho meson in AdS/QCD,

hep-ph/0501197.

[15] S. Hong, S. Yoon and M.J. Strassler, On the couplings of vector mesons in AdS/QCD, JHEP

04 (2006) 003 [hep-th/0409118].

[16] S.M. Cohen, Path integral for the quantum harmonic oscillator using elementary methods,

Am. J. Phys. 66 (1998) 537.

[17] A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236].

[18] J. Polchinski, String theory. Vol. 1: an introduction to the bosonic string, Cambridge

University Press, Cambridge U.K. (1998); String theory. Vol. 2: superstring theory and

beyond, Cambridge University Press, Cambridge U.K. (1998).

[19] M.B. Green, J.H. Schwarz and E. Witten, Superstring theory. Vol. 1: introduction,

Cambridge University Press, Cambridge U.K. (1987).

– 33 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C88%2C031601
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C88%2C031601
http://arxiv.org/abs/hep-th/0109174
http://jhep.sissa.it/stdsearch?paper=05%282003%29012
http://jhep.sissa.it/stdsearch?paper=05%282003%29012
http://arxiv.org/abs/hep-th/0209211
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD9%2C697
http://jhep.sissa.it/stdsearch?paper=12%282007%29005
http://arxiv.org/abs/hep-th/0603115
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=SJNCA%2C23%2C338
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=YAFIA%2C23%2C642
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=SPHJA%2C45%2C199
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ZETFA%2C72%2C377
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=YAFIA%2C27%2C1091
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=YAFIA%2C27%2C1091
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C87%2C241802
http://arxiv.org/abs/hep-ex/0107071
http://arxiv.org/abs/hep-ph/0508274
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C95%2C261602
http://arxiv.org/abs/hep-ph/0501128
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB721%2C79
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB721%2C79
http://arxiv.org/abs/hep-ph/0501218
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB269%2C1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=SPHJA%2C67%2C1975
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=SPHJA%2C67%2C1975
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ZETFA%2C94%2C37
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C14%2C257
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C14%2C257
http://arxiv.org/abs/hep-ph/0501197
http://jhep.sissa.it/stdsearch?paper=04%282006%29003
http://jhep.sissa.it/stdsearch?paper=04%282006%29003
http://arxiv.org/abs/hep-th/0409118
http://jhep.sissa.it/stdsearch?paper=06%282002%29043
http://arxiv.org/abs/hep-th/0205236

